PHYS 340a Part II. Homework \#1

Due date: March $25^{\text {th }}, 2010$

1. Show that $\mathrm{S}+\mathrm{U}+\mathrm{T}$ is Lorentz invariant
2. For fixed target experiments, given a kinetic energy of the beam, calculate the beam energy and momentum in the laboratory frame, the rapidity covered in the lab, $\mathrm{y}_{\text {proj }}-\mathrm{y}_{\text {targ }}$, the center-of-mass rapidity, the velocity of the beam in the laboratory frame, $\mathrm{E}_{\mathrm{cm}}, \mathrm{P}_{\mathrm{cm}}$, and the velocity of the beam in the center-of-mass frame. Write the expression used to calculate each quantity. Assume pp interactions with a proton mass of 0.938272 GeV . The velocities should be in c $=$ 1 units so that $\mathrm{v}=\beta$. The values of $\mathrm{E}_{\text {kin }}$ are $10 \mathrm{MeV}, 1,10,60,160$ and 200 GeV .
3. For collider experiments, given a value of $\operatorname{sqrt}(\mathrm{S})$, calculate $\mathrm{E}_{\mathrm{cm}}, \mathrm{p}_{\mathrm{cm}}$, total rapidity coverage, $y_{\text {proj }}-\mathrm{y}_{\text {targ }}$, the velocity of the center-of-mass frame and the equivalent value of $\mathrm{E}_{\text {lab }}$ for a fixed-target experiment. Write the expression used to calculate each quantity. Assume pp interactions with a proton mass of 0.938272 GeV . The velocities should be in $c=1$ units so that $v=\beta$. The values of sqrt(S) are 60, 200, $500,1800,5500$ and 14000 GeV .
4. Show that for small velocity the rapidity $\mathrm{y} \cong \beta$.
5. Show that for $\mathrm{p} \gg \mathrm{m}$, the rapidity $\mathrm{y} \cong \eta$
