Lecture 3:

Last time:

o Invariants

o Cross-section: Fermi’'s golden rule

o Feynman diagrams (rules) for QED, weak, QCD
Today: electron-proton scattering and the
evidence for nucleon structure

2 QED processes to consider

electron-positron annihilation
electron-proton scattering
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M~>is expressed | the same way ~ e2/g2 However, the four-
momentum transfer is very different.




What if T take the second diagram and
rotate it . Will these be the same now ?

No, not really. The proton is not a point charge.

Mni—history of scattering experiments

* Rutherford, Geiger and Marsden direct alpha
particles into a gold foil, and detect the number which
pass through to the other side.

* “Plum-pudding” model predicts only very small
angle scattering; nothing at large angles

* Large angle scattering observed!

* Consistent with scattering from a point charge much
smaller than size of atom: the nucleus!

« Scattering by electromagnetic force which is well
understood theoretically (reliable prediction).

* The angular distribution of events from a point charge
is known as the Mott cross section (relativistic) or
Rutherford (non-relativistic).




| Electron-Nucleus Scattering

Hofstadter et al. use an electron beam at Stanford to study the
atomic nucleus (and nucleon) further.

S| Atlow energy (large wavelength),
o iR gold nucleus looks like a point charge
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Now go to SLAC and find out what
happens in e-p scattering

‘ Kinematics of e-p scattering
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‘ The MIT-SLAC experiment

‘ Elastic scattering: ee and ep

For e-e or e-u: the Mott cross section can be calculated using Feynman
calculus for QED. Scattering of point objects. In the non-relativistic in the
limit p2<<m_?, Mott reduces to Rutherford .
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The electric and magnetic form factors describe the time-averaged structure of the
proton. In the non-relativistic limit the squares of these functions are the

Fourier transforms of the spatial distributions of charge and magnetic moment,
respectively. They depend only on 1 parameter ( g2 for theorists and 9, for
experimentalists.)




‘ Elastic scattering results

Elastic Electron-Proton Scattering
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Fig. 4. Elastic scattering cross sections for electrons from a “point” proton and for the actual
proton. The differences are atiributable fo the finite sire of the proton.

Inelastic e-p scattering. The proton
breaks-up into many particles.
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Fg 5. Feynman diagram for inelastic electron scattering.

Note: in e-p elastic, E'is kinematically determined by E and 6. However, here
the total hadronic momentum squared does not need to equal M2, as it would
be for a single proton.




Inelastic x-section and structure functions

BT g ) = ay [Warg?) + 2W, ngian’@,2)]
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*This expression is the analog of the Rosenbluth cross section

*The inelastic structure functions depend on 2 variables (v,q?)

*The structure functions W, and W, are similarly defined for

the proton, deuteron, or neutron; they summarize all the information

about the structure of the target particles obtainable by scattering unpolarized
electrons from an unpolarized target. (i.e. the spin is not defined).

‘ The data:
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= Large inelastic x-sect and flat with g2




Scaling and scaling variables

Bjorken conjectured that in the limit of g and v
approaching infinity, with the ratio ® = 2Mv/g? held
fixed, the two quantities vW, and W, become functions
of m only.

2MW, (v, ¢') = F, (0)

YW, (v, ) = F; (@)

Later, the quantity 1/o=x was used and identified as the
fraction of the proton momentum (mass) carried by the
struck quark

Scaling has been shown to be a consequence of the
fact that the proton consists of point-like constituents

Spin %2 of the constituents dictates that 2xF,(x) = F,(x)
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‘ More scaling data
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‘ Where are the constituents?
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‘ Sum rules and the constituents

= If the proton with momentum p is made up of
partons each carrying some fraction x; of the proton
momentum and charge Q;:

N
YW, 4) =3 P (Elfﬁ) Halx) = Falx)

P(N) is the probability of N partons
FINAL-STATE occurring.
INTERACTION

f N(x) is the distribution of the
longitudinal momenta of the charged
partons

|
] HADRONS

The data showed that the protons are
not just u and d quarks

— About half of the nucleon momentum
is carried by gluons

1 (



Parton distribution functions
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