Lecture 4:

- Last time we talked about deepinelastic scattering and the evidence of quarks
- Next time we will talk about hardscattering in QCD (pp collisions)
- Today I want to spend a little more time on elementary interactions, since we need to know about them before we move to a more complicated system : AA collisions

Goal of the Lecture

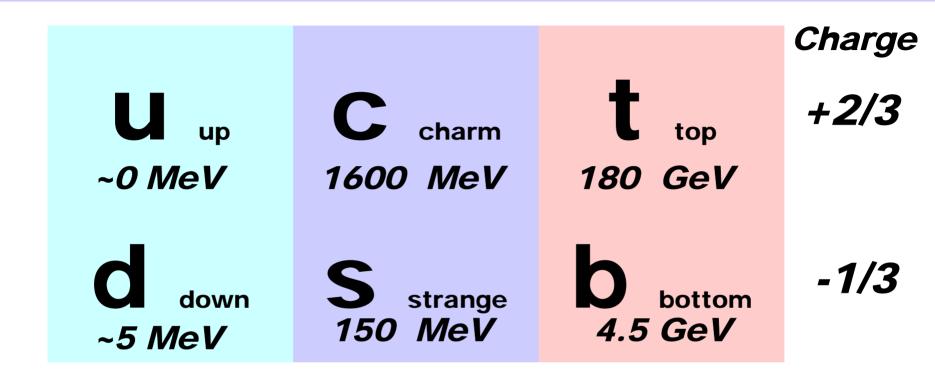
- (Re)introduce the fundamental particles of the Standard Model
- Describe simple conservation laws
- Make the connection between observables (decay rates) and coupling constants that we learn from the Standard model

Leptons

• There are three lepton families

$$\begin{array}{c} \mathbf{e}_{\text{electron}} & \mathbf{\mu}_{\text{muon}} & \mathbf{\tau}_{\text{tau}} \\ m_e = 0.511 \, \text{MeV} & m_\mu = 105.7 \, \text{MeV} & m_\tau = 1777 \, \text{MeV} \\ \mathbf{V}_{\mathbf{e}} & \mathbf{V}_{\mu} & \mathbf{V}_{\tau} \end{array} \right)$$

- Neutrinos are nearly massless (at least they were until 1998)
 - All of them are left handed!
- Each lepton number is conserved separately (except in neutrino mixing)
 - $L_{e'}$, $L_{\mu'}$, L_{τ} must be the same coming into and leaving a reaction


$$n \to p + e^- + \overline{\nu}_e \qquad \pi^+ \to \mu^+$$

$$L_e \quad 0 \rightarrow 0 + 1 + (-1) \qquad L_\mu \quad 0 \rightarrow (-1) + 1$$

Julia Velkovska

 $+ \nu$

Quarks

- Quarks are the building blocks of protons and neutrons, the stable non-leptonic matter in the universe.
- Although we assign them identities and charge states, no free quarks have ever been seen!

Quark Quantum Numbers

- Quark numbers are conserved separately by the strong & electromagnetic interactions
 - Up-ness, Down-ness, Strange-ness, Charm, Bottom, Top
- Strong Isospin : I=1/2 for u,d and I=0 for s,c,b,t. As a results hadrons come as isospin singlets (I=0), doublets (I=1/2, (p,n)) and vectors (I=1, π^{+/-}, π⁰). Strong isospin is conserved in the strong interactions.
- Other "flavor" QN's have a simple rule:
 - If quark has q=2/3 (e.g. c,t) then positive
 - If quark has q=-1/3 (e.g. s,b) then negative
- So s \rightarrow S=-1, c \rightarrow C=1, b \rightarrow B=-1, t \rightarrow T=1

Hadrons

- In nature, quarks are hidden.
- Instead, they appear in pairs and triplets:
 - Mesons QQ (π, Κ, ρ, ω)
 - quark-antiquark pairs with integral spin (bosons)

u

- Baryons QQQ (p, n, Λ, Δ)
 3 quarks with half-integral spin (ermions)
- Baryon number is conserved in nature
 - Some baryons are stable (nuclei exist!)
 - No mesons are stable they decay rather quickly (~10⁻⁹ s for weak decays)

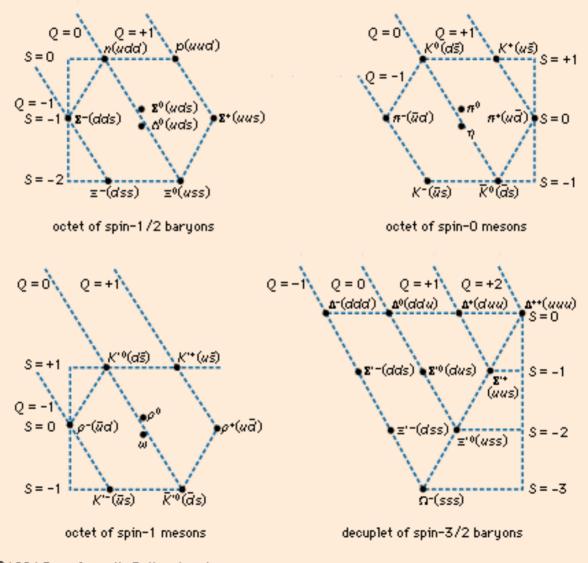
Examples of Hadrons

and Antihamians and

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. There are about 120 types of baryons.							Mesons qq Mesons are bosonic hadrons.						
There are about 120 types of baryons.							There are about 140 types of mesons.						
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin		Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin	
р	proton	uud	1	0.938	1/2		π^+	pion	ud	+1	0.140	0	
p	anti- proton	$\overline{u}\overline{u}\overline{d}$	-1	0.938	1/2		K⁻	kaon	sū	-1	0.494	0	
n	neutron	udd	0	0.940	1/2		ρ^+	rho	ud	+1	0.770	1	
Λ	lambda	uds	0	1.116	1/2		В ⁰	B-zero	db	0	5.279	0	
Ω-	omega	SSS	-1	1.672	3/2		η_{c}	eta-c	۲	0	2 .980	0	

- In particle physics "stable" hadrons means: do not decay via strong interaction.
- Unstable states (or strongly decaying states) are called "resonances"

The hadrons


See http://pdg.lbl.gov

For an index of reviews of particle physics see:

http://pdg.lbl.gov/2007/reviews/content_sports.html

The hadrons have been classified into groups (sort of periodic table of sub-atomic particles) based of their symmetrical properties. The system was proposed in 1961 by the American physicist Murray Gell-Mann and the Israeli physicist Yuval Ne'eman.

The SU(3) – 3 quarks hadron classification

©1994 Encyclopaedia Britannica, Inc.

Julia Velkovska

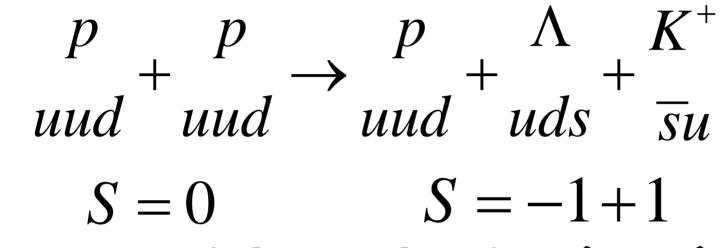
10/29/2007

PHY 340a

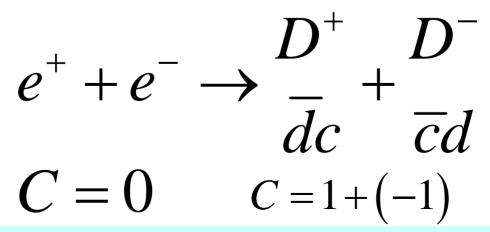
Conservation laws

- 1. Energy and momentum conservation
- (implies that in decays $M_0 > \Sigma m_i$)
- 2. Angular momentum conservation
- 3. Charge
- 4. Baryon number
- 5. Lepton number (each individual L# is conserved, except in neutrino mixing)
- **1-5 are are conserved by any interaction In addition:**
- 6. Hadronic flavor is conserved by EM & strong interactions (but not in weak)
- 7. Parity is conserved in EM& strong, but not in weak

Example of lepton # conservation (Lepton Decay Madness ©)

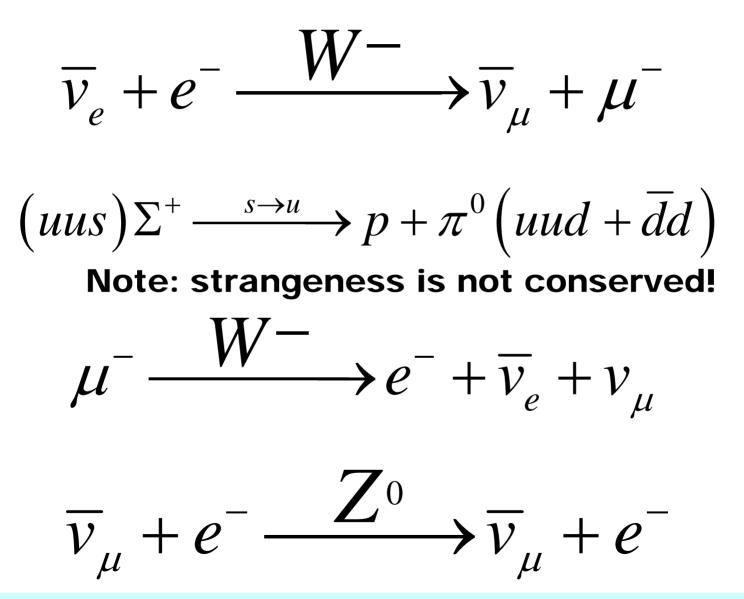

$$\tau^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu} + \nu_{\tau}$$

$$e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$


- So we start with 1 tau lepton
- We end with 1 tau neutrino, 2 muon neutrinos (particle & anti-particle), 1 electron, and one anti-electron neutrino!
- Nothing is violated!

Quark QNs in Action

Strange particle production (strong)



Charm particle production (E&M)

Julia Velkovska

(More) Weak Decay examples

Julia Velkovska

Consider the following reactions: which are allowed and which not ?

 By which interaction do these process occur (i.e. – if they are possible) ?

$$1) p + \overline{p} \rightarrow \pi^{+} + \pi^{0}$$

$$2) \eta \rightarrow \gamma + \gamma$$

$$3) \Sigma^{0} \rightarrow \Lambda + \pi^{0}$$

$$4) \Sigma^{-} \rightarrow N + \pi^{-}$$

$$5) e^{+} + e^{-} \rightarrow \mu^{+} + \mu^{-}$$

$$6) \mu^{-} \rightarrow e^{-} + \overline{v}_{e}$$

$$7) \Delta^{+} \rightarrow \pi^{0} + p$$

Julia Velkovska

PHY 340a

Examples of hadron decays and lifetimes

- Look at the handout with hadrons lifetimes and major decay modes
- Do you notice patterns ?
 - Lifetimes go in groups
 - ~10⁻¹⁰ sec
 - ~10⁻¹⁹ sec
 - ~10⁻²³ sec

 Yes, you guessed correctly: weak, EM, strong decays !

How to think about couplings

- The matrix elements relate to lifetime via the "width" $\Gamma \equiv \hbar / \tau \propto |M|^2 \propto \alpha^2$
- In addition, there is phase-space (or *dLips* in lecture 2), which indicates how many states are available in the final state and in a way how "easy" it is to decay
- From the matrix element: the ratio of the strengths

is

$$rac{lpha_1}{lpha_2} \propto \sqrt{rac{ au_2}{ au_1}}$$

Stronger coupling, shorter life

$$\frac{\alpha_s}{\alpha} \propto \sqrt{\frac{10^{-19}}{10^{-23}}} \sim 100$$

$$\frac{\alpha_{w}}{\alpha} \propto \sqrt{\frac{10^{-19}}{10^{-10}}} \sim 10^{-5}$$

Julia Velkovska

The weak interaction strength

- Major victory of theoretical physics was finding a structure which could include electromagnetism and weak forces in a single set of fields
- If we assume g=e, and measure G (the strength of the weak interactions) we can extract M

$$\frac{g^2}{q^2 - M^2} \Rightarrow \frac{g^2}{M^2} \equiv G \sim 10^{-5} GeV^{-2}$$
$$\frac{g^2}{M^2} \equiv G \Rightarrow M = \sqrt{\frac{4\pi\alpha}{G}} \sim 90 GeV$$

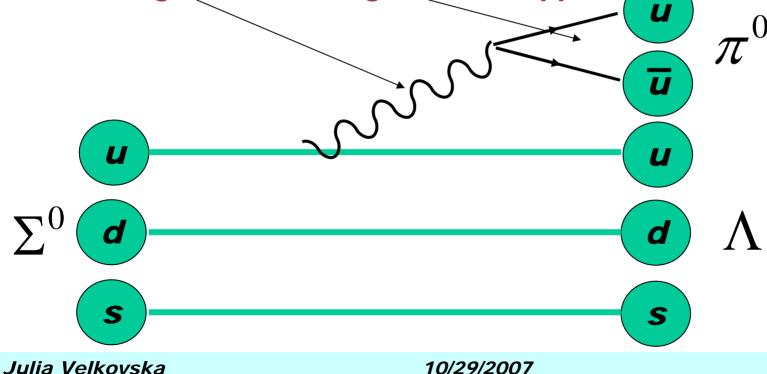
- The W & Z bosons were discovered in 1981, exactly where they were predicted to be!
- Note the masses of W and Z are not exactly the same because of the different factors involving the Weinberg angle in the vertices.

Example: Strength from Time

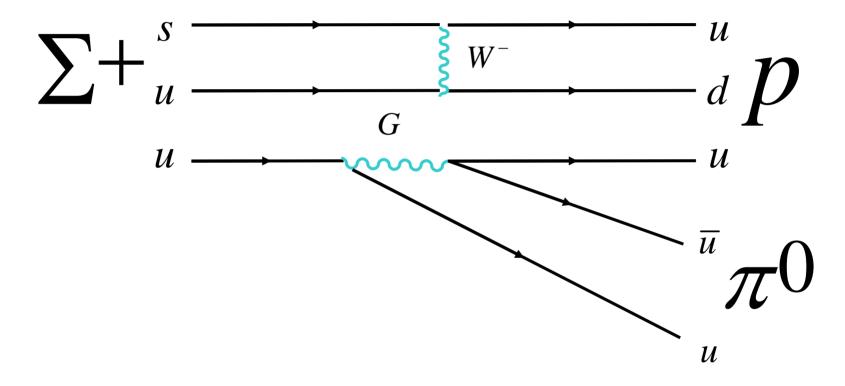
Consider 3 decays

$$\Sigma^{0}(1192) \rightarrow \Lambda \gamma \quad Q = 74 MeV \quad \tau = 10^{-19} \sec$$
$$\Sigma^{+}(1189) \rightarrow p \pi^{0} \quad Q = 189 MeV \quad \tau = 10^{-10} \sec$$
$$\Sigma^{0}(1385) \rightarrow \Lambda \pi^{0} \quad Q = 208 MeV \quad \tau = 10^{-23} \sec$$

Both Σ^{0} have the same quarks (uds) and similar Q values (liberated kinetic energy)


Why the drastically different lifetimes??

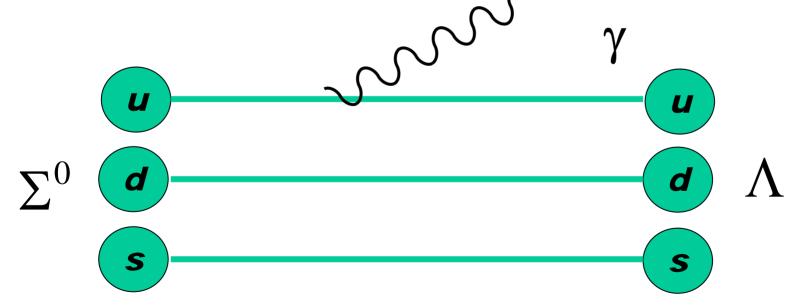
Julia Velkovska


Back to our example: Strong Decays

The basic idea is that

- Initial and final states are "color neutral"
 - Only $Q\overline{Q}$ mesons, and QQQ baryons
- Strong interaction conserves flavor
 - Quark lines can emit quark-antiquark pairs by radiating a gluon that "fragments" $\rightarrow q\bar{q}$

A Hybrid Example: Weak interaction is involved – long lifetime



This decay is much slower ($\tau \sim 10^{-10}$ s) than for Σ^{0} .

Coming back to our example:

This decay can occur because the spectator quarks can exchange gluons such that the overall momentum Is conserved .

Strong decay : Σ^{0} (1192) -> π^{0} + Λ is impossible because the mass of Σ^{0} is less than the summed masses of π^{0} and Λ .

More examples:

 Consider the charged and neutral pions: belong to a strong isospin triplet, but very different lifetimes

$$\pi^{+/-}: \tau \sim 10^{-8} \sec$$
 weak
 $\pi^{0}: \tau \sim 10^{-16} \sec$ EM

• Also consider the branching ratios for the different decay modes of π^0 : the decay with gets smaller proportionally to the added factors of α at every additional decay vertex

Summary

- Today we reviewed:
 - Quark and lepton quantum numbers
 - Conservation Laws
 - Fermi's golden rule for decays
 - Coupling strength
 - Relation between lifetime and coupling