Lecture 10 : Statistical thermal model

Hadron multiplicities and their correlations and fluctuations
(event-by-event) are observables which can provide information
on the nature, composition, and size of the medium from which
they are originating.

Of particular interest is the extent to which the measured particle
yields are showing thermal equilibration. Why ?

We will study:
o particle abundances: chemical composition

o Particle momentum spectra: dynamical evolution and collective
flow

Statistical mechanics predicts thermodynamical quantities based
on average over stat ensemble and observing conservation laws.



Statistical approach

The basic quantity required to compute the thermal composition
of particle yields measured in heavy ion collisions is the partition
function Z(T, V ). In the Grand Canonical (GC) ensemble,
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where H is the Hamiltonian of the system, Q, are the conserved
charges and pq, are the chemical potentials that guarantee that
the charges Q, are conserved on the average in the whole
system. (3 is the inverse temperature.

The GC partition function of a hadron resonance gas can then
be written as a sum of partition functions InZ; of all hadrons and

resonances
InZ(T,V., i) = Z InZ;(T,V, i)



InZ(T,V., @) = > InZ(T.V.j), (4)

where €; = +/p? + m.? and 7 = (up, s, pto) with the chemical potentials
tt; related to barvon number, strangeness and electric charge, respectively.
For particle ¢ of strangeness 5;. baryvon number B;, electric charge (2; and
spin—isospin degeneracy factor g;.
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with (+) for fermions, (-) for bosons and fugacity
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Expanding the logarithm and performing the momentum integration in
Eq. (5) we obtain
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where o is the modified Bessel function and the upper sign is for bosons
and lower for fermions. The first term in Eq. (7) corresponds to the Boltz-
mann approximation. The density of particle ¢ is obtained trom Eq. (7)
as
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The statistical model parameters

The partition function (and its derivatives) depends

in general on five parameters. However, only three are
independent, since the isospin asymmetry in the initial state fixes
the charge chemical potential and the strangeness neutrality
condition eliminates the strange chemical potential.

Thus, on the level of we are only left
with temperature T and baryon chemical potential pg as
independent parameters.

If we find agreement between the statistical model prediction and
data: the interpretation is that this implies statistical equilibrium
at temperature T and chemical potential pg. Statistical equilibrium
is a necessary ( but not sufficient) condition for QGP formation.



Statistical “penalty” factors and associated

production

T — Ly

p S exp

T

Sign in u,

- for matter

+ for anti-matter

u, ~ 450 MeV at AGS

u, ~ 30 MeV at RHIC in
central rapidity

Associated production:
o NN-> NAK*

Q = m,+m,-my = 672 MeV
a2 NN->NNK*K-

Q=2 m, = 988 MeV



What else appears in models: strangeness
1s special !

Sometimes an additional factor y, (<=1) is needed to describe
the data involving strange particles ( we'll have a separate
lecture on strangeness production)

this implies a state in which strangeness is suppressed
compared to the equilibrium value => additional dynamics
present in the data which is not contained in the statistical
operator and not consistent with uniform phase space density.

Reminder: in small and cold systems strangeness is not
copiously produced, thus we need to take care that it is
absolutely conserved ( not just on the average) and use a
canonical partition function. If, in this regime, canonically
calculated particle ratios agree with those measured, this implies
equilibrium at temperature T and over the canonical volume V.

o How do we know the volume ??



Comparison to model
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The criterion for the best fit
of the model to data is a
minimum in 2

Here: R 4 @and R,

the ith partlcle ratio as
calculated from the model
or measured in the
experiment

o, represent the errors
(including systematic errors
where available) in the
experimental data points as
quoted in the experimental
publications.



How do we measure the particle yields ?

|dentify the particle (by its mass and charge)
Measure the transverse momentum spectrum
Integrate it to get the total number of particles

In fixed target experiment — everything goes
forward ( due to cm motion) — easy to
measure total ( 4r) yield

In collider experiment: measure the yield in a
slice of rapidity : dN/dy

Apply corrections for acceptance and decays



Methods for PID: TOF
Time of flight measurement: measure

PHENIX High Resolution TOF
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PHENIX high-p.. detector

Combine multiple detectors to get track-by-

track PID to p; ~ 9 GeV/c
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HOBOS PID Capabilities
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eutral particles can be reconstructed through their

decay product
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Resonance Signals in p+p and Aut+Au
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Meaqure t)artlcle spectra
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Statistical model fits: T, and W,

dev.
SRNON A

200 GeV Au+Au, <N > =322

T,= 15743  [MeV]
M= 94+12 [MeV]

B 'AOW-#I'%(

u= 31423 [MeV]
y,= 1.03+0.04
x/dof=19.9/ 10

(*1) : feed-down effect is corrected in data
(#2) : feed-down effect is included

Look like the system has
established thermal
equilibrium at some point
in its evolution ( we don’t
know when from this type
of analysis, but we have
other handles)

The chemical
abundances correspond
to Ty, ~157+/- 3 MeV ,
ug ~ 30 MeV

Short lived resonances
fall off the fits



The baryon chemical potential
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temperature T [MeV]

Where are we on the phase diagram ?

250

200

150

100

50

early universe

I
LHC
| guark-gluon
RHIC plasma
-_\NV SPS

chemical freeze-out

AGS

thermal freeze-out

v’
1

hadron gas ,
atomic
| | | nucllei neutron stars
0.2 0.4 0.6 0.8 1 1.2 1.4

baryonic chemical potential ug [GeV]

Fig. 31.

) (MY

Temperaiure | Ye)

-
-

v [CRE)

Behavior of the freeze—out baryon chemical potential pp {upper curve) and

the temperature T (lower curve) as a function of energy from Ref. (53). The temperature

T as a function of beam energy is determined from the unified freeze—out conditions of

fixed energy/particle.



What is the order of the phase transition ?

Is there a phase transition at RHIC and LHC ?
From lattice — it is a cross-over

Then QGP or not is not a “yes” or “no” answer
Smooth change in thermodynamic observables

Can we find the critical point ?

ol o Then we'll have dramatic fluctuations in <p;> and
baryon number

Data on fluctuations at SPS and RHIC — very
similar results and no dramatic signals. Are we
on the same side of the critical point ?

While T, is rather well established, there is a
big uncertainty in p,
W, eNdPOINY T~ 1 (Gavai, Gupta), ~ 2 (Fodor,Katz), ~ 3 (Ejri et al)
pyfreezout 450 MeV (AGS) ---> 30 MeV (RHIC)
u preezout ~ T corresponds to sqrt(s) = 25 GeV



Can we find the critical point ?
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Large range of pg still unexplored : no data in the range pg =70 -240 MeV

You can run RHIC at low energies ( with some work on the machine which
seems feasible). The cover g = 30-500 MeV (Vs from 5 GeV to 200 GeV)

The baryon chemical potential coverage at FAIR will be approximately
400-800 MeV.






Initial conditions

Two pieces of information needed to
establish the initial conditions:

a the critical energy density ¢, required for
deconfinement

o the equation of state (EoS) of strongly interacting
matter

Lattice QCD determines both ¢.and EoS



Lattice QCD — QGP phase transition
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1-QCD : EoS

EoS for pure glue: strong deviations from ideal gasup to 2 T,

1 1.5 2 25 3 a5 4 45

L-QCD - the only theory that can compute the EoS from first principles

But, [-QCD lacks dinamical effects of the finite nuclear collision system.

Many of the global observables are strongly influenced by the dynamics of the
collisions.

Microscopic (for the initial state) and macroscopic (hydrodynamics) transport
models describe the collective dynamics: EoS is used as an input, local thermal
equilibrium is assumed at all stages, system evolution is computed => results
compared to data



Statistical model in pp collisions

First proposed by Rolf Hagedorn in order to describe the
exponential shape of the mt-spectra of produced particles in p—p
collisions. Hagedorn also pointed out phenomenologically the
importance of the canonical treatment of the conservation laws
for rarely produced particles.

Recently a complete analysis of hadron yields in p—p as well

asin p-p, ete—, T-p and in K—p collisions at several center-of-
mass energies has been done ( refs) . This detailed analysis has
shown that particle abundances in elementary collisions can be
also described by a statistical ensemble with maximized entropy.
In fact, measured yields are consistent with the model assuming
the existence of equilibrated fireballs at a temperature T =160-
180 MeV. However, the agreement with data requires a
strangeness under-saturation factor y, ~0.51
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