Jet quenching

Hard-scattering probes

Probing the medium

I will make an artificial distinction of the "medium" and "the probe"

In fact: both are produced in the collision

- Medium: The bulk of the particles; dominantly soft production and possibly exhibiting some phase.
- <u>Probe</u>: Particles whose production is calculable, measurable, and thermally incompatible with (distinct from) the medium.
- The basic idea:

Things to learn

- Measure the density of the medium
- Is the medium colored (i.e. deconfined) ? Specific pQCD predictions for induced gluon radiation since 1990s

High p_T Particle Production in pp

Jet: A localized collection of hadrons which come from a fragmenting parton

Parton Distribution Functions

Hard-scattering cross-section

Fragmentation Function

"Collinear factorization"

Calibrating the Probe(s)

hep-ex/0305013 S.S. Adler et al.

Calibrate the probe and then use it !

Single-particle spectrum and QCD predictions

Quantifying the nuclear effect

$$=\frac{1}{\langle n_{coll}\rangle}\frac{d^2N_{AB}/dydp_T}{d^2N_{pp}/dydp_T}=\frac{1}{\sigma_{pp}\langle T_{AB}\rangle}\frac{d^2N_{AB}/dydp_T}{d^2N_{pp}/dydp_T}$$

Compare Au+Au to nucleon-nucleon cross sections Compare Au+Au central/peripheral

 R_{AA} Normalization

Stony Brook University

Thomas K Hemmick

Suppression of high-p_T hadrons in AuAu collisions

Phenix: Phys.Rev. C69 (2004) 034910

 \rightarrow See a strong suppression of high p_T yields in AuAu Central Collisions

High p_T Particle Production in A+A: why suppressed?

Initial state effect I: Cronin enhancement

Multiple scattering in the initial state leads to p_T smearing and then enhancement

Cronin Effect:

Multiple Collisions broaden high P_T spectrum

 \bigotimes

 \otimes

Initial vs final state suppression

- Calibrating the probespp reference data
 -agrees with NLO pQCD
- Peripheral Collisions
 -Scale with Ncoll
- Central Collisions DO NOT SCALE!

Is it

- Suppression of low-x gluons in the initial state?
- Energy loss in a new state of matter?

d+Au Control Experiment

- Collisions of small with large nuclei were always foreseen as necessary to quantify cold nuclear matter effects.
- Recent theoretical work on the "Color Glass Condensate" model provides alternative explanation of data:
 - Jets are not quenched, but are a priori made in fewer numbers.
 - Color Glass Condensate hep-ph/0212316; Kharzeev, Levin, Nardi, Gribov, Ryshkin, Mueller, Qiu, McLerran, Venugopalan, Balitsky, Kovchegov, Kovner, Iancu
- Small + Large distinguishes all initial and final state effects.

\mathbf{R}_{AA} vs. \mathbf{R}_{dA} for Identified π^0

d-Au results rule out CGC as the explanation for Jet Suppression at Central Rapidity and high $p_{\rm T}$

Charged Hadron Results

- Striking difference of d+Au and Au+Au results.
- Charged Hadrons higher than neutral pions.

Centrality Dependence

 Dramatically different and opposite centrality evolution of Au+Au experiment from d+Au control.
 Jet Suppression is clearly a final state effect.

Control experiment: colorless probe

Back to back jets (di-jets)

single particle spectra tell you a lot, but you should be able to learn even more from di-jets

Tomographic information on the medium

Azimuthal Correlations from Jets

Disappearance of the "Away-Side" Jet

Suppression of away side jet in central Au+Au collisions

Jet quenching: conclusions

- Strong suppression of high-p_T hadrons and disappearance of the away-side jet in central AuAu
- No such effects in dAu
- No suppression of photons in AuAu
- Jet quenching is due to final state (the presence of medium)
- The medium is extremely dense : dN/dy(gluons)
 ~ 1000 indicative of QGP

Shock waves ?

- It looks like the medium quenches the jets, but it also responds to the propagation of the fast moving parton
- If you look closely, you will find the lost energy at lower momenta !
- And ... it looks like we have a tool to measure the speed of sound in QGP!

Here is what the data look like

- The shapes of jets are modified by the matter.
 - Mach cone?
 - Cerenkov?
- Can the properties of the matter be measured from the shape?
 - Sound velocity
 - Di-electric constant
- Di-jet tomography is a powerful tool to probe the matter

Suggestive of...

Cherenkov cones? Mach cones?

Other ideas: shock waves vs bent jets

Jets maybe deflected due to the radiual flow in the medium
Testable via 3-particle correlations
Present data (not yet conclusively) supports Mach cones

