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1 Introduction

Heavy ion collisions are done in order to produce matter at extreme condi-
tions. Di�erent from high energy physics experiments, we are not after new
particles but after properties of matter such as the equation of state, trans-
port coe�cients, mean free path, e�ective degrees of freedom etc. Therefore,
methods and tools from solid state physics are equally important as those
from high energy physics.

Let us start the discussion by asking ourselves how we characterize a piece
of matter (material). First we look at its color, its shape, its weight. Then
we squeeze it and scratch it, use a magnet. Next we might drill a hole in
it to see what is inside, we might heat it up, put it into an x-ray machine
etc. In heavy ion physics we do similar things: We measure spectra (color?),
�ow (squeeze), excitation functions (heat) jet measurements and correlations
(x-ray) and possibly �uctuations (squeeze, magnetic �eld).

Theoretically, the simplest approach is statistical physics. Here the only
assumptions are the conservation laws. But even that can be a daunting
task, as the full interaction may not be tractable. Thus, one starts with the
ideal gas and slowly introduces more physics. The �rst correction may be
quantum statistics, but in case of HI collisions these are not that essential.
More important are interactions and the correlations resulting from them. A
simple way to include some of these is to treat resonances as explicit particles
and by introducing mean �eld forces. On a more sophisticated level one could
imagine treating correlations explicitely. Also, at lower energies, conservation
laws such as strangeness need to be introduced explicitely leading to the
canonical treatment.

The quality of the model can be tested against Lattice QCD (LQCD),
which gives all thermodynamic quantities in full QCD. A given statistical
model should reproduce the equation of state, i.e. entropy and pressure, but
also the higher moments of the partition function. Thus, �uctuations are a
valuable constraint for the model Hamiltonian. These can also be tested in
experiment, at least in principle.

The next more complex level of description introduces dynamics. Again
several level of approximation are possible. The two simplest ones are free
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streaming corresponding to no interactions and Hydrodynamics, which is
based of current conservations under the assumption of local thermal equi-
librium. Thus (ideal) hydro is a direct map of the statistical description to
the dynamics of the system. All that is needed is the equation of state and
some initial conditions. If one wants to compare with spectra, additional as-
sumption concerning the freeze out have to be made as well. The next level of
sophistication is viscous hydro and then transport theory. In this case infor-
mation about equilibration time scales enter the problem. In case of viscous
hydro, the transport coe�cients which can be obtained in a relaxation time
approximation enter. In case of transport the full matrix elements enter and
not just the �rst moments. Thus contrary to hydro, a transport description
requires knowledge/assumptions about the relevant degrees of freedom and
their interaction. This might be di�cult to come by but on the other hand
the nature of system may require it.

In these lectures we will essentially walk through all these theoretical
descriptions from simple to more sophisticated. At each point we will try to
make contact with observables and data and will discuss the limitations of a
given theoretical framework.

2 Statistical approach

2.1 Micro-canonical ensemble

Lets start out by reviewing the basic ideas behind statistical mechanics. A
macroscopic system is characterized by its conserved quantities, such as en-
ergy, momentum, charge, volume etc. These quantities are also referred to
as extensive quantities, which scale with the size of the system. Given these
conserved quantities, the basic assumption of statistical physics is that each
state with the same value for the conserved quantities is equally probable. For
simplicity, let us assume that the energy is the only conserved quantity. In
this case we can write [1]

Pr = c ifE < Er < E + δE

Pr = 0 otherwise (1)

the constant probability c is then given

c =
1

Ω(E)
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where Ω(E) is the number of accessible states for a system with energy E

Ω(E) =
∑
r

δ(E − Er)δE (2)

Obviously, this ensures that ∑
r

Pr = 1

The number of states Ω(E) is related to the entropy of the system by

S(E) = ln(Ω(E)) (3)

and Ω(E) is sometimes referred to as the micro-canonical partition function.
Yes, we are dealing here with the so called micro-canonical ensemble, where
the system is fully characterized by its extensive (conserved) quantities. Note
that Ω(E) depends on the magnitude of the energy interval δE. As we will
show below, for any macroscopic system, thermodynamic quantities like the
entropy are independent of the actual size of δE as long as δE � E.

The generalization to more than one conserved quantity is straightforward

Ω(E, Qi) =
∑
r

δ(E − Er)δE
∏
i

δQi,Qi
r

(4)

where the Qi is are the conserved charges such as electric charge, baryon-
number, strangeness etc.

In the micro-canonical ensemble the expectation value of any opera-
tor/quantity is simply given by〈

Ô
〉

=
∑
r

Pr〈r|Ô|r〉

where 〈r|Ô|r〉is the expectation value of the operator Ô for the state |r >.
Note that we use here the same notation 〈〉 for quantum and statistical
averages. Subsequently we will mostly deal with statistical averages and
thus 〈〉will refer to statistical averages if not stated otherwise.

By now the obvious questions arise: Where is the temperature, where are
the chemical potentials? Isn't that what we use in heavy ion collisions? Why
bother with the micro-canonical ensemble? These are valid questions and we
will introduce temperature and chemical potentials is due course. But before
we get to this, let us discuss the micro-canonical ensemble a little more.
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One question which comes to mind is: Where in Eq.4 does the physics
enter, in our case, where does QCD enter? Well, the interactions, QCD in
our case, a�ects how many states the system has for a given energy, charge
etc. This is it!

Next, let us work out a few simple examples as they will come handy
later in the discussion. First, let us calculate the micro-canonical partition
function for non-relativistic particles in a box.

2.1.1 Particles in a box

Let us begin by �rst considering one particle in a box, then turn to many
distinguishable particles and �nally do the case for indistinguishable parti-
cles. The energy eigenvalues for one particle in a box of length L are given
by

En(nx, ny, nz) =
(p2

x + p2
y + p2

z)

2m
=

(2π)2

2mL2
(n2

x + n2
y + n2

z) (5)

with

px,y,z =
2π

L
nx,y,z

nx, ny, nz = 1, . . .∞

the quantum numbers for the motion in the x,y,z direction. With these
energies, Eq.5, the micro-canonical partition function Eq.4 can be evaluated.
However, its is more instructive and also more realistic to go to the continuum
limit, stateL � 1

m
where we can convert sums into integrals. In this case

∆nx =
L

2π
dpx

and ∑
nx,,ny ,nz

= L3
∫ dpx

2π

dpy

2π

dpz

2π
= V

∫ d3p

(2π)3
. (6)

In this case, Eq. 4 can be written as (V = L3)

Ω(E) =
V

(2π)3

∫
dpxdpydpz δ(E − E(p))δE (7)

or

ρ(E) ≡ δΩ(E)

δE
=

V

(2π)3

∫
dpxdpydpz δ(E − E(p)) (8)
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where ρ(E)is called the density of states, i.e. the number of states in a given
energy interval δE. Since

E(p) =
1

2m
(p2

x + p2
y + p2

z)

the δ-function simply restricts the integral to the surface of a sphere in three
dimensions. Taking into account the Jacobian for the δ-function

δ(E − p2

2m
) =

m√
2mE

δ(
√

2mE − |p|)

Eq.8 turns into

ρ(E) =
V

(2π)3

m√
2mE

∫
d3pδ(

√
2mE − |p|)

where the remaining integral is just the surface of a 2-sphere with radius
R =

√
2mE. Thus we get for the density of states

ρ(E) =
V

(2π)3

m√
2mE

4π(
√

2mE)2 =
V

(2π2)
(2m)3/2

√
E (9)

Now we are ready to consider an arbitrary number N of particles in a
box of length L. For each particles we have to sum/integrate over all states
subject to the constraint that the total energy is E. Thus we have to deal
with an 3N -dimensional integral for the density of states

ρ(E) =
V N

(2π)3N

∫ N∏
i=1

dp3
i δ(E − 1

2m

N∑
i=1

p2
i )

Obviously, the δ-function restricts the area of integration to the surface of
a sphere in 3N -dimensions. The Jacobian for the δ-function is the same as
before and we get

ρ(E) =
V N

(2π)3N

m√
2mE

∫
d3Np δ(

√
2mE − |p|)

The surface of a sphere in n-dimensions of radius R is given by

A(Sn) = 2
πn/2

Γ(n/2)
Rn−1
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where Γ is Euler's Gamma function. Thus we get for the density of states of
N -particles in a box

ρ(E) = V NΓ(
3N

2
)

m
3N
2

(2π)
3N
2

E
3N
2
−1

Consequently, the density of states grows like large power of the energyρ(E) ∼
E

3N
2 and exponentially with the number of particles. The entropy, which is

given by

S(E) = ln Ω = ln(ρδE) = (
3N

2
− 1) ln(EV 1/3) + ln(δE V 1/3) + constants.

(10)
Coming back to the ambiguity of the choice of δE discussed previously, it is
clear from Eq.10 that as long as δE � E and N � 1 the term containing
δE is a negligible contribution to S and a small change to the size of δE does
not change the value of the entropy. As a result, for any macroscopic system
(N � 1) the entropy is controlled by the density of states, i.e.

S ∼ ln(ρV −1/3).

2.2 Canonical approximation

2.2.1 Mathematical derivation

Now this was all �ne, but we were lucky that we could do the integral of Eq.7
because non-relativistic free particles have such a nice dispersion relation.
Already the treatment of relativistic particles gets complicated, because the
relation between energy and momentum is not so simple anymore. It would
be much more convenient if we found a way to calculate the density of states
without having to deal with this δ-function. While δ-functions appear easy
to integrate over, this is in fact not the case. If we wanted to do this integral
numerically, say by Monte-Carlo methods, we would have to check always
that the δ-function is satis�ed. It would be much better to have a proper
weighting function such that we could sample over all possible states without
checking the energy δ-function all the time. Let's see if we can �nd something
like that1. Lets start from the original form for the micro-canonical partition
function Eq.2

Ω(E) =
∑
r

δ(E − Er)δE (11)

1The are several alternative methods discussed in [1] which all lead to the same result.
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and use a suitable representation of the δ-function

δ(E − Er) =
1

2π

∫ +∞

−∞
dβ′eiβ′(E−Er) eβ(E−Er) =

1

2π

∫ +∞

−∞
dβ′eβ̄(E−Er) (12)

where
β̄ = β + iβ′

is complex. Inserting into the expression for Ω(E),Eq. 11we get

Ω(E) =
δE

2π

∑
r

∫ +∞

−∞
dβ′eβ̄(E−Er) =

δE

2π

∫ +∞

−∞
dβ′eβ̄EZ(β̄) (13)

with
Z(β̄) =

∑
r

e−β̄Er =
∑
r

e−(β−iβ′)Er (14)

Now let us look at this new object, Z(β̄), more closely. The astute reader will
already guess where we are heading. First we note that so far the transfor-
mations have been exact and that we succeeded in being able to sum over all
states without any restriction. The prize we pay is that we have to sum up
complex numbers e−(β−iβ′)Er . We �rst note that the imaginary part of Z(β̄)is
an odd function of β′ and hence does not contribute to Ω(E). Second, for
�nite values of β′, the expression e−(β−iβ′)Erpicks up a phase which averages
to zero when we sum over many values of Er. This is illustrated in Fig.1,
where we plot the real part of

∑50
n=1 eiβ′n as a function of β′. Obviously the

only sizable contribution is around β′ ' 0.
Let us, therefore, expand the integrant in Eq.13, or rather its logarithm

as this is smoother, around β′ ∼ 0.

ln(eβ̄EZ(β̄)) = β̄E + ln(Z(β̄))

= (β + iβ′)E + ln(Z(β)) + (iβ′)B1 +
1

2
(iβ′)2B2 + . . .

= βE + ln(Z(β)) + i(E + B1)β
′ − 1

2
B2β

′2 + . . .

with

Bk =
∂k ln Z(β̄)

∂β̄k

∣∣∣∣∣
β′=0

=
∂k ln Z(β)

∂βk
.

Exponentiating gives then

eβ̄EZ(β̄) ' eβEZ(β)e−
1
2
B2β′2ei(E+B1)β′ .
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Figure 1: Plot of <(
∑50

n=1 eiβ′n)as a function of β′.

We note that |eβ̄EZ(β̄)| ∼ e−
1
2
B2β′2and thus has a maximum at β′ = 0. Next

we can use the parameter β to improve our approximation by choosing β
such that the �rst term in the Taylor expansion above vanishes

E + B1 = 0

E +
∂ ln Z(β)

∂β
= 0 (15)

As a result the phase ei(E+B1)β′ in the above expression vanishes around β′ = 0
and we have

eβ̄EZ(β̄) ' eβEZ(β)e−
1
2
B2β′2

So what we did in practice, was to approximate the oscillatory curve depicted
in Fig.1 by a Gaussian, and by choosing the parameter β according to the
condition 15 we made sue that the contribution from the oscillatory wings
to the integral is minimal. Inserting above expression into Eq.13 we then get
for the micro-canonical partition function

Ω(E) = eβEZ(β)
δE

2π

∫ +∞

−∞
dβ′e−

1
2
B2β′2 = eβEZ(β)

δE√
2πB2

and consequently
ln Ω(E) ' βE + ln Z(β). (16)
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Does this look familiar? If not, recall that the entropy was de�ned as S =
ln Ω. Further, let's just for the �fun� of it, de�ne

β ≡ 1

T

ln Z ≡ −F

T
. (17)

With these de�nitions Eq.17 can be written as

F = E − TS. (18)

Now this looks very familiar. Just like the de�nition of the Helmholtz free
energy. Somebody might argue that this cannot be true. We just did some
mathematics and approximation. How come that we all of a sudden wind
up with physical quantities such as temperature and free energy? Well, lets
�rst look at the free energy or rather at the function Z. From its de�nition
(Eq.14) we �nd

Z(β) =
∑
r

e−βEr . (19)

So, if β is indeed related to the temperature as given by Eq.15, then this
indeed looks like the well know canonical partition from statistical physics.
Lets us further look at the condition for β in order to maximize the quality
of our approximation (Eq.15). Using the de�nitions of 17 we �nd

0 = E +
∂ ln Z

∂β
= E − ∂(F/T )

∂(1/T )
= E + T

∂F

∂T
− F

or

E = F − T
∂F

∂T

which is again a well know formula. If we further insert the basic thermody-
namic relation 18 we also �nd that

S = −∂F

∂T
.

Finally, if we insert Eq.19 into Eq.15 we get

E =

∑
r Ere

−βEr∑
r e−βEr
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which is the canonical expression for the mean energy, suggesting the the
probability to �nd a state r is given by

Pr =
e−βEr∑
r e−βEr

.

Below (Eq.21) we will show that this is indeed the case. Obviously, our math-
ematics just gave us a �thermodynamic� system in the canonical description,
which usually requires the coupling to a heat-bath and allowing for exchange
of energy between the system and heat-bath.

2.2.2 Physical derivation

Let us brie�y review how the standard argument goes when introducing the
canonical description. First one considers a system S and a reservoir R
(heat-bath) such that the reservoir is much bigger than the system, i.e

ΩS � ΩR

next one allows for exchange of energy between the two systems and maxi-
mizes the entropy of the combined system. The number of accessible states
of the combined system is

Ωtotal(E) =
∑
∆E

ΩS(∆E)ΩR(E −∆E)

As we have shown above Ω(E) is a steeply rising function of E, and thus
Ω(E0−E) is equally steeply falling. Consequently, the product ΩS(∆E)ΩR(E−
∆E) has a sharp maximum as a function for ∆E. Thus the sum will be dom-
inated by a few terms, and the most probable con�guration is given by the
maximum of ΩS(∆E)ΩR(E − ∆E). Finding the maximum by setting the
derivative with respect to ∆E to zero we obtain

0 =
∂

∂(∆E)
[ΩS(∆E)ΩR(E −∆E)]

0 =
∂ΩS
∂E

ΩR −
∂ΩR
∂E

ΩS

1

ΩS

∂ΩS
∂E

=
1

ΩR

∂ΩR
∂E

∂

∂E
ln ΩS =

∂

∂E
ln ΩR
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using the de�nition for the entropy S = ln Ω we �nd that the derivatives of
the entropy with respect to the energy in both systems should be the same

∂

∂E
SS =

∂

∂E
SR.

Since two systems in thermal contact are in equilibrium if their temperatures
are the same, this suggests the de�nition for the temperature as

1

T
= β =

∂

∂E
S(E). (20)

De�ning the inverse of the temperature to be equal to the energy derivative of
the entropy ensures that the energy �ows from a system of higher temperature
to that of lower temperature [1]. This statistical de�nition of the temperature
is very powerful, and indeed if we apply the de�nition 20 to what we found
by doing pure math, Eq.16, we see that indeed our intuition that β = 1

T
was

correct.
Let us now introduce the Boltzmann factors following the same line of

reasoning. To this end we ask ourselves, what is the probability that the
system S is in a state n with energy En. Following Eq.1 this probability is
given by

Pn =
ΩR(Etotal − En)

Ωtot(Etotal)

since for a �xed state r of the system we have ΩR(Etotal − En) states of the
reservoir each with the same probability 1/Ωtot(Etotal). Therefore, the ratio
of probabilities for the system to be in states nand m is

Pn

Pm

=
ΩR(Etotal − En)

ΩR(Etotal − Em)
.

Taking the logarithm and expanding for En,m � Etotalwe get

ln(
Pn

Pm

) = SR(Etotal − En)− SR(Etotal − Em) ' ∂SR
∂E

|E=Etotal
(Em − En)

or
Pn

Pm

' e−βEn

e−βEm
=

e−En/T

e−Em/T
.

Consequently the probability to �nd a state n is given by

Pn =
e−βEn∑
m e−βEm

=
1

Z
e−βEn (21)

which incidentally is exactly what we concluded from our mathematical ex-
ercise above.
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2.2.3 Some �academic� example: Exponential density of states

Let us look at the rather �unusual� case of an exponential density of states

ρ(E) = e
E
α

In this case the temperature is given by (see Eq.20)

T =

(
∂ ln(ρ)

∂E

)−1

=

(
∂

∂E

E

α

)−1

= α = constant

INDEPENDENT of the energy. To put this in perspective, for an ideal gas
we have

T =
2

3

E

N

i.e. the temperature is proportional to the energy. In case of the ideal gas,
we kow that the density of states grows like a power law

ρ(E) ∼ E
3N
2

i.e. slower than exponential. Imagine that the density of states would grow
faster than exponential such as for example

ρ(E) ∼ eγ(E)E

with γ(E) a function increasing with E, for instance γ(E) ∼ En. In this case
the temperature would be

T (E) ∼ 1

γ(E)
∼ E−n.

Consequently the temperature would decrease with increasing energy, leading
to inconsistent thermodynamic bhaviour. Thus we conclude, that the density
of states can grow at most exponentially with the energy.

Why did we bother with this academic case? Well, there is the so-called
Hagedorn model, which assumes that the density of hadronic states grows
exponentially with the mass

ρ(m) ∼ e
m

TH (22)

where TH ∼ 170 MeV is the Hagedorn temperature. For hadron-masses
m ≥ 1 GeV density of states given by Eq.22 actually is well supported by the
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experimentally determined spectrum of hadronic states. Let us assume for a
moment that Eq.22 is valid for all masses. Let us next consider on particle
in a box which is subject to the Hagedorn mass spectrum. Staying with a
non-relativistic description the density of states of this system is given by

ρH(E) =
∫

dm
∫ E

0
dEk e

m
TH ρ0(Ek) δ(E − (m + Ek)).

Here, ρ0(E) stands for the density of states of one particle in a box, Eq.9.
Integrating over the mass and using the δ-function, we get for the density of
states

ρH(E) = e
E

TH

∫ E

0
dEk e

mEk
TH ρ0(Ek)

and

SH(E) = ln(ρH(E)) =
E

TH

+ ln(I(E)), (23)

where I(E)is simply the integral in the previous equation

I(E) =
∫ E

0
dEk e

mEk
TH ρ0(Ek).

Now for E � TH the �rst term in Eq.23, which is linera in E, will be much
bigger than the second term which grows only logarithmically. In this case

SH(E) ∼ E

TH

.

As a result the temperature of such a system for ALL energies E � TH is
constant, independent of the energy and given by the Hagedorn temperature,
TH

T (E) = TH , , E � TH .

Indeed, we predict a limiting temperature and this is seen in the analysis of
hadronic ratios.

2.3 Grand canonical ensemble, single particle partition

functions etc.

2.3.1 General considerations

Before we discuss the implications for the heavy ion physics, let us introduce
a few more well known concepts from statistical physics. We shall be brief
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here, as most of the ideas are analogous to what we have discussed in the
previous sections and details can be found in standard textbooks such as [1].

Let us start out with the canonical partition for a single particle in a box

Z1 = V
∫

d3p e−βE(p) (24)

The partition function for N non-interacting distinguishable particles is sim-
ply the product of the single particle partition functions

ZN,distin. = ZN
1

In case of indistinguishable particles, we have to divide by all permutations
which leave the con�guration unchanged

ZN =
ZN

1

N !
(25)

Subsequently ZN will always refer to the indistinguishable N -particle parti-
tion function. These formulas will come in handy when we will discuss grand-
canonical ensemble in more detail and when e�ects of explicit charge/strangeness
conservation will be addressed. Let us now turn to the grand-canonical en-
semble.

As already discussed, a macroscopic system is characterized not only
by its energy but also by conserved charges, such as the electric charge,
strangeness, baryon-number etc. Just as in the transition from the micro-
canonical to the canonical description, where we gave up on the exact con-
servation of energy, one introduces the so-called grand-canonical ensemble,
where one keeps the conserved charges �xed only on the average. For sys-
tems with large number of charges this should be a good approximation2

and again, this can be viewed either as mathematical approximation or as a
system in contact with a reservoir, where now also the exchange of conserved
charges is allowed. The corresponding �Boltzmann�-actor then becomes

e−β(Er−
∑

i
µiQ

i
r)

and the grand-canonical partition function given the conserved charges Qiand
associated chemical potentials µi is given by

ZG =
∑

all states r

e−β(Er−
∑

i
µiQ

i
r) (26)

2This is true for averages only. For variances extra care needs to be taken as discssed
below.
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Here the sum includes states with di�erent particle number. The probability
to �nd a state r is given by

Pr =
1

ZG

e−β(Er−
∑

i
µiQ

i
r). (27)

The corresponding free energy, which is often called the �thermodynamic

potential� is again given by the log of the partition function

FG = −T ln ZG (28)

Lattice QCD at �nite temperature for instance does nothing else but cal-
culating the grand-canonical partition function for QCD, at present only
for vanishing chemical potentials. Given this partition function, observables
such as the average charge Qiis obtained by di�erentiating with respect to
the appropriate conjugate variable, in this case the chemical potential µi

〈Qi〉 =

∑
all states r Qi e

−β(Er−
∑

i
µiQ

i
r)∑

all states r e−β(Er−
∑

i
µiQi

r)
=

1

β

∂

∂µi

ln ZG. (29)

Variances and co-variance are second derivatives of ln ZG〈
(δQi)

2
〉
≡

〈
Q2

i

〉
− 〈Qi〉2 =

1

β2

∂2

∂µ2
i

ln ZG (30)

〈δQiδQj〉 = 〈QiQj〉 − 〈Qi〉 〈Qj〉 =
1

β2

∂2

∂µi∂µj

ln ZG (31)

and we will used these expressions when we come to the discussion of �uctu-
ations.

2.3.2 Example: ideal gas

To illustrate these concepts and to introduce a few new, often used formulae,
let us discuss the grand canonical description of an ideal gas. We will start
out with the conventional approach and then use a more �modern� approach,
which considers the ideal gas as a sum of sub-systems, where each subsystem
is a single particles level (orbital). Suppose, that we consider a system where
the number of particles N is a conserved quantity. Then the ZG (Eq.26)
reads

ZG =
∑

all states r

e−β(Er−µN).
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In case of a classical ideal gas, where we have no interactions, the sum over
all states can be decomposed into a sum over system with a given particle
number N times the sum over all energies given this particle number

ZG =
∑
N

∑
εN

e−β(εN−µN) =
∑
N

eβµN
∑
εN

e−βεN .

The second sum is nothing but the N -particle canonical partition function
ZN , Eq.25 so that

ZG =
∑
N

eβµNZN =
∑
N

(eβµZ1)
N

N !
= exp(eβµZ1)

where we have used the relation between ZNand Z1 for indistinguishable
particles. As we have seen above, the quantity of relevance is the logarithm
of ZG or the free energy

ln ZG = eβµZ1 = V
∫ d3p

(2π)3
e−β(E(p)−µ) ≡ Z1,G.

Here we have de�ned the grand-canonical single-particle partition function
Z1.G in analogy to Z1, Eq.24. This already looks familiar. Lets us next
calculate the mean number of particles. From Eq.30 we get

〈N〉 =
1

β

∂

∂µ
ln ZG = V

∫ d3p

(2π)3
e−β(E(p)−µ) = Z1,G. (32)

Now this is something we all know. In order to obtain the number of particles,
just integrate over the �Boltzmann�-factor over all momenta. To get a better
understanding of this result let us look at the �modern� derivation of the
ideal gas.

Another, equivalent, way to look at the ideal gas is to consider it as a
ensemble of system, where each system is just one individual single parti-
cle quantum state (orbital). This has the added advantage that quantum
statistics can be easily taken into account as it only a�ects the occupation
of a given state. In this approach, the total partition function is simply the
products of the partition functions of all single particle states

ZG =
∏
s

Zs,

where s denotes the individual state. So all we need to do is to work out Zs

for a given state. Lets do Bose-Einstein statistics �rst, then Fermi-Dirac and
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�nally take the classical limit. For Bose statistics, there is no limit in how
many particles we can put into a given state s. If n particles are in the state
s its energy is given by E = nεS, where εs is the energy level of the single
particle state. Thus we have

ZB.E.
s =

∞∑
n=0

e−β(nεs−nµ) =
∞∑

n=0

(e−β(εs−µ))n =
1

1− e−β(εs−µ)
.

Given Zswe can calculate the mean number of particles in the state s

〈n〉B.E.
s =

1

β

∂

∂µ
ln ZB.E.

s =
1

Zs

1

β

∂

∂µ
ZB.E.

s =
e−β(εs−µ)

1− e−β(εs−µ)

=
1

e+β(εs−µ) − 1
≡ fB.E.(εs, µ)

and �nd the well know occupation function for Bose-Einstein statistics. Since
we are mostly interested in the logarithm of ZG, we have

ln ZG =
∑
s

ln ZB.E.
s = V

∫ d3p

(2π)3
ln Zp = −V

∫ d3p

(2π)3
ln(1− e−β(εp−µ)).

Here we used the continuum limit, Eq.6, and we label the states with by their
momenta. As a consequence of this well know expression, the total particle
number 〈N〉is given by

〈N〉B.E. =
1

β

∂

∂µ
ln ZB.E.

G = V
∫ d3p

(2π)3
〈n〉p = V

∫ d3p

(2π)3

1

eβ(εp−µ) − 1
,

i.e. simply by the sum over the mean occupation of all states. Similar
expression can be derived for the variances as we will discuss later when we
talk about �uctuations.

Fermi-Dirac statistics is done in a similar fashion. Given a state s the
Pauli-principle allows for no more the one particle in the state, hence

ZF.D.
s = 1 + e−β(εs−µ).

Going through the same steps as before we �nd

〈n〉F.D.
s =

1

eβ(εs−µ) + 1
≡ fF.D.(εs, µ),

ln ZF.D.
G = V

∫ d3p

(2π)3
ln(1 + e−β(εp−µ)),

〈N〉F.D. = V
∫ d3p

(2π)3

1

eβ(εp−µ) + 1
.
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Both results can be cast into compact form

ln ZG = ±V
∫ d3p

(2π)3
ln(1± e−β(εp−µ))

〈N〉 = V
∫ d3p

(2π)3

1

eβ(εp−µ) ± 1

where the upper sign refers to Fermi-Dirac and the lower sign to Bose-Einstein
statistics, respectively. The classical limit is obtained if e−β(εp−µ) � 1, i.e.
the occupation of each orbital is small

ln Zclassical
G = V

∫ d3p

(2π)3
e−β(εp−µ)

〈N〉classical = V
∫ d3p

(2π)3
e−β(εp−µ)

which is of course our previous result.

2.3.3 Explicit conservation of charges

In the context of heavy ion collisions it has been realized that the conservation
of some charges have to be taken into account explicitely, notably strangeness
at lower energies (AGS) or possible in peripheral collisions. From what we
already know, we expect that this explicit conservation will become relevant
only if few quanta carrying the conserved charge are present. In this case,
the above mathematical tricks are not well justi�ed as the entropy is not as
sharply peaked as it should in order to justify the Gaussian approximation.
This is often referred to as the �canonical� limit. Of course this is no limit,
as the system should always be treated micro-canonically. And everything
else are limits. But what is meant is that in the �limit� of few strange parti-
cles, the grand-canonical approximation fails and one has to treat strangeness
explicitely while still approximating the energy-conserving δ-function as dis-
cussed above. This is a reasonable approach as there is enough energy to go
around. Also the electric charge can be treated grand canonically, because
there are many charge carriers.

In order to discuss the basic principles, let us consider a system which
consists of kaons and anti-kaons only, and let us derive the basic relations
assuming that strangeness is conserved explicitely, i.e.

S = N+ −N−; δS = 0
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Here N+ denotes the number of kaons, and N− the number of anti-kaons3.
Let us again assume that we are dealing with a (classical) ideal gas, i.e no
interactions. Then the partition function for N+ kaons is given by

ZN+ =
Z

N+

1,+

N+!
=

ξ
N+
+

N+!

where we introduced a short hand for the one particle partition function
Z1,+ ≡ ξ+. Note also, as a result of Eq.32, ξ+is simply the mean number
of kaons in a grand-canonical system with vanishing strangeness chemical
potential

ξ+ = 〈N+〉G,µs=0 .

Obviously, every time we have N+ kaons, we need to balance with N− anti-
kaons. Consequently the partition function is

Zcan(S = 0) =
∑
m

ξn
+ξn
−

n!n!

Each term in the sum explicitely has strangeness S = 0 and we sum over the
remaining free variable, namely the number of kaons/anti-kaons. Obviously,
this can be generalized to any value of the net strangeness

Zcan(S) =
∞∑

m=S

ξS+m
+ ξm

−
(S + m)!m!

. (33)

It turns out that the above sum is identical to the Bessel function IS(z) which
has the series representation

IS(z) =
∞∑

k=0

1

k!Γ(S + k + 1)

(
z

2

)(S+2k)

=
∞∑

k=0

1

k!(S + k)!

(
z

2

)(S+2k)

.

With
z ≡ 2

√
ξ+ξ−

the partition function is then

Zcan(S) = IS(z)

(
ξ+

ξ−

)S/2

. (34)

3Note that for historical reasons the strangeness of a kaon is positive, although it
contains and strange anti-quark. Thus a strange quark carries strangeness sq = −1.
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The average number of kaons is obtained in the usual way. In each term
in the sum of Eq.33 the number of kaons is given by the exponent of ξ+.
Therefore,

〈N+〉 =

∑∞
m=S(S + m)

ξS+m
+ ξm

−
(S+m)!m!∑∞

m=S

ξS+m
+ ξm

−
(S+m)!m!

=
1

Zcan(S)
ξ+

∂

∂ξ+

Zcan(S) = ξ+
∂

∂ξ+

ln Zcan(S).

Likewise the variance is given by〈
(δN)2

〉
=

(
ξ+

∂

∂ξ+

)2

ln Zcan(S)

In terms of the Bessel function, this translates into

〈N+〉 =
z

2

IS+1(z)

IS(z)
+ S

〈N−〉 =
z

2

IS+1(z)

IS(z)

z = 2
√

ξ+ξ−. (35)

For the case e of interest in heavy ion collisions, S = 0, we have

〈N+〉 = 〈N−〉 =
z

2

I1(z)

I0(z)
.

Now for small temperatures and/or small system sizes, ξ± � 1, hence z � 1
and we may expand the above expression for small arguments. With

I0(z) = 1 +
z2

4
+O(z4)

I1(z) =
z

2
+

z3

16
+O(z4)

we get to leading order

〈N+〉 = 〈N−〉 '
z2

4
=

1

2
ξ+ξ− =

1

2
V 2

(∫ d3p

(2π)3
e−βE

)2

. (36)

So the number of kaons scales with the volume squared! and with the square
of the kaon number in the grand-canonical limit. Since we are in the regime
where ξ+ � 1 we further have

〈N+〉canonical =
1

2
ξ+ξ− =

1

2
ξ2
+ � ξ+ = 〈N+〉grand−canonical .
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Figure 2: Ratio of Bessel-functions I1/I0.

As expected the kaon number is suppressed due to explicit strangeness con-
servation. For large values of ξ±, (see Fig.2)

I1(z)

I0(z)
→ 1; z →∞

so that
〈N±〉 ==

z

2
=
√

ξ+ξ− = ξ± = 〈N±〉grand−canonical

and we recover the grand-canonical value when the number of quanta is
large4.

From Eq.35 the suppression of the kaon number due to explicit strangeness
conservation is given by the ration of the Bessel functions I1(z)

I0(z)
, while the

grand-canonical kaon number is given by ξ+ = z/2. Thus the plot in Fig.2
shows the suppression factor as a function of grand-canonical kaon number.
If the number of kaons is larger than Nk ≥ 2 the grand-canonical approxi-
mation is �ne. In the context of heavy ion collisions one might argue that
this is not a problem as one has more than 2 kaons at least for AGS energies
and above. This, however, is too simplistic as we shall see below. The kaon
number of relevance is that within a volume over which the system is fully

4The fact that the grand-canonical and canonical ensemble are equivalent is only true
for mean values. Once we look at variances (�uctuations) this is not longer the case as we
will discuss below.
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equilibrated. This could be much smaller than the full volume of the �reball,
and consequently canonical suppression might be of great importance. This
argument can be turned around, and one can use the canonical suppression
in order to estimate the size over which the system has truly equilibrated.

After these rather formal developments, let us no turn to the physics of
heavy ion collisions and see how the insights gained here allow us to better
understand and interpret the data.

2.4 Relation to heavy ion collisions

So why did we do all this? Well we saw that the phase space grows rapidly
with energy and particle number and that we can introduce concepts like
�temperature� and free energy without ever talking about a heat-bath etc. We
also provided the foundation for all the formulae used in statistical hadroniza-
tion models. We further saw that explicit strangeness conservation is impor-
tant for small and/or cold systems.

All we did was to approximate the calculations for the number of ac-
cessible states by an integral over a Gaussian, which captures most of the
integral. In physical terms, we described the ensemble by requiring that the
mean energy of this system is the same as the micro-canonical energy via 15.

In other words, if we can describe a statistical ensemble by a temperature,
it does not necessarily mean that we a dealing with a �thermal� system in
the Boltzmann sense, where particles collide and equilibrate the system. It
could simply be generated by �randomly� throwing particles into phase space
or by rolling dice fro that matter. This �nding will be important when we
discuss particle ratios and chemical equilibrium in the context of elementary
particle collisions as well as heavy ion collisions.
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3 Fluctuation and Correlations

Now that we have gained some understanding of the static properties of the
statistical system, lets now turn to �uctutuations. To start lets recall what
we learned in the previous chapter. Given a partition function

Z =
∑
s

〈
s|e−β(Ĥ−

∑
i
µiQ̂i)|s

〉
=
∑
s

e−β(Es−
∑

i
µiQi,s) 〈s|s〉 ,

where we have assumed that s denotes Eigenstates of the system with a given
charges Qi

5, we can evaluate the mean of any operator Ô

〈
Ô
〉

=
1

Z

∑
s

e−β(Es−
∑

i
µiQi,s)

〈
s|Ô|s

〉
≡ 1

Z
tr(ρ̂Ô).

Here ρ̂ is the statistical operator

ρ̂ =
∑
s

e−β(Ĥ−
∑

i
µQ̂i)|s〉〈s| (37)

Now we are ready to write down the general expressions for variances and
co-variances

〈
(δx)2

〉
≡

〈
x2
〉
− 〈x〉2 =

1

Z
tr(ρ̂ x2)−

[
1

Z
tr(ρ̂ x)

]2
(38)

〈δx δy〉 ≡ 〈xy〉 − 〈x〉 〈y〉 =
1

Z
tr(ρ̂ xy)− 1

Z2
tr(ρ̂ x)tr(ρ̂ y). (39)

While these averages can be taken for any quantity, if we want to stick with
the philosophy of statistical mechanics, we should stick with the variables
available, such as energy, and the charges.

3.1 Energy Fluctuations

3.2 Charge Fluctuations

3.3 Correlations

5This is always possibke since the charges are conserevd and thus commute with the
Hamiltonian.
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4 Dynamical models

So far our discussion has concentrated on static systems. Obviously this
simpli�es the discussion and theoretical treatment, but a heavy ion collision
is a highly dynamic process. Also, contrary to an elementary particle collision
such as e+e− it is virtually impossible to calculate the matrix element which
connects the initial and �nal state of such a collision. Already the initial
state, two nuclei, is a highly complex many body system and while there
might be some hope that one can treat at least the low Bjorken x part of
the initial wave function the subsequent evolution is hopeless to address the
entire collision as a full quantum process. Therefore one has to resort to
approximations which, so far are all classical and semi classical methods.

In this chapter we will discuss two dynamical models, hydrodynamics
on the one hand and Boltzmann-transport on the other. We will also show
how hydrodynamics results from Boltzmann-transport in the limit of long
wavelength and rapid local equilibration.

4.1 Hydrodynamics

Hydrodynamics is similar to the statistical approach in philosophy. It solely
relies on conservation laws and the dynamics are simply governed by the con-
served currents of the system. In statistical physics the system was charac-
terized by energy and momentum conservation and by all conserved charges.
Similarly, in hydrodynamics, the time evolution of the system is controlled
by the continuity equations associated with the same conserved quantities,
energy/momentum, and conserved charges. For this to work, one has to as-
sume that the system is locally in equilibrium, so that by knowing the value
of these conserved quantities at a given point in space and time, we know
the properties of the matter at this time. One can relax this requirement,
which then leads to viscous hydrodynamics and eventually to transport the-
ory, as we will discuss in the second part of this chapter. If everything is
controlled by the conservation laws, including the conservation of entropy,
then one speaks of ideal hydrodynamics. In this section we will exclusively
deal with ideal hydrodynamics and thus will drop the quali�er �ideal� in the
subsequent discussion. Since hydrodynamics is based on continuity equations
let us remind ourselves what a continuity equation is all about.

26



4.1.1 Continuity equations

Each conserved charge Q with

d

dt
Q = 0

is associated with a current ~j(~r) such that

∂

∂t
ρ(~r) + ~∇~j(~r) = 0 (40)

where ρ is the charge density such that∫
d3rρ(~r) = Q.

For example consider dN particles with charge q in a small volume dV . Then
the charge density is given by

ρ = q
dN

dV

The total charge in the volume QV = ρ dV changes as particles move in and
out through surface of the volume. If the particles move with a velocity ~v
this change during a time interval dt is given by

δQV = dt
∮

S(dV )
ρ~v d~n

where the integral is over the surface of dV and ~n is a vector normal to the
surface pointing outside; d~n is the corresponding surface di�erential. On
the other hand, the change of the charge is due to the change of the charge
density inside the volume

δQV = −dV
∂ρ

∂t
dt.

Hence, we have, using Gauss' law,

−dV
∂ρ

∂t
=
∮

S(dV )
ρ~v d~n =

∫
dV ~∇(ρ~v) = dV ~∇(ρ~v)

With the current
~j = ρ~v
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we arrive at the continuity equation Eq.40. De�ning a four-vector

jµ = (ρ,~vρ)

the continuity equation can be written in a compact form

∂µj
µ =

∂ρ

∂t
+ ~∇(ρ~v) = 0.

Recall, that ∂µ = (∂t, ~∇), while xµ = (t,−~x). Note, that the density trans-
forms like the zero's component of four vector under a Lorentz boost, i.e
ρ = γρ0 where ρ0 is the density in the rest-frame. Thus the four current of a
�uid cell may be written as

jµ = ρ0u
µ

where uµ is the four velocity

uµ = (γ, γ~β) (41)

with ~β the boost velocity and

γ =
1√

1− β2
.

Since a continuity equation holds for any conserved quantity, we can write
them for the energy and each component of the momentum. If ε is the energy
density, we obtain

∂tε + ~∇(~vε) = ∂t + ~∇ ~P = 0. (42)

Here we have de�ned the momentum density ~P = ε~v. Since each component
of the three-momentum is conserved independently we obtain three more
continuity equations which involve the momentum densities P i

∂tP i + ∂j(v
jP i) = ∂tP i + ∂jΠ

ji = 0. (43)

Here, we have introduced the so called momentum �ow tensor

Πij = viPj (44)

which describes the momentum �ow in a given direction. For example, Πxy

describes the �ow of x-momentum in the y-direction. Obviously, o�-diagonal
elements of the stress tensor are a measure for the shear (or stress). Suppose
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Πxy 6= 0, then two layers stacked up in the y-direction moving with relative
velocity in the x-direction will be subject to friction, because x-momentum
�ows from one layer to the other. This is nothing but shear as indicated
in Fig.36. For a system at rest in thermal equilibrium the stress tensor is
diagonal

Πij = pδij (45)

because any remaining shear forces would result in e�ectively rotating the
system. The diagonal elements

Πii = viP i

are the momentum �ow through the surface df i, perpendicular to the �ow
direction. Consequently Πiidf i = dpi

dt
is the force acting on this surface. This

is what the pressure in a thermal system does so that the diagonal elements
of the stress tensor are simply the pressure as indicated in Eq.45.

The continuity equations for the energy-current, 42, and momentum-
current, 43, can be written in a compact form

∂µT
µν = 0 (46)

where we have introduced the so-called energy-momentum tensor or stress-
energy tensor T µνwhich has the following components

T 00 = ε

T i0 = T 0i = P i i = 1, 2, 3

T ij = Πij i, j = 1, 2, 3. (47)

Equation 46 expresses the conservation of energy and momentum as a set of
continuity equations as detailed above.

For a gas of free particles the energy-momentum tensor is given by [2]

T µν(x) =
∑

i

pµ
i p

ν
i

Ei

δ3(xi − x)

where pµ
i is the four-momentum of particle i, Here we also made explicit that

the stress energy tensor is a �eld, i.e. it depends on the coordinates.

6One has to be a little more careful here. There will be o�-diagonal elements in Πij

from motion of fuid cells. Stress, stress however, will also lead to o�-diagonal elements in
the rest frame of the cell.
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X
Figure 3: E�ect of �nite o�-diagonal component Πxy. The �ow direction
is indicated by the vertical red arrows and the momenta are given by the
horizontal blue arrows.
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Since hydrodynamics is nothing more than that plus the conservation
of all other charges, the equations for relativistic ideal hydrodynamics are
simply given by Eq.46 for a system where local thermal equilibrium is main-
tained. In addition the continuity equations for each conserved charge such
as baryon number, strangeness etc need to be ful�lled.

4.1.2 Relativistic ideal hydrodynamics

Having all the necessary equations governing relativistic hydrodynamics, all
we need is the appropriate form of the stress-energy tensor T µν . To this end
let us consider the stress-energy in the rest-frame of a �uid cell. In this case,
the momentum densities vanish,

T i0 = T 0i = P i = 0 i = 1, 2, 3.

Furthermore, hydrodynamics assumes local thermal equilibrium. Following
the previous discussion (Eq.45 and Eq.47) the spacial part of the tensor is

T ij = Πij = pδij i, j = 1, 2, 3

so that

T µν =


ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


is diagonal and covered by the pressure and the energy density of the system
at rest. Of course during the evolution the �uid cell starts moving so we need
the stress-energy tensor of a moving �uid cell. Since we still assume, that
the cell should be in local thermal equilibrium, the moving cell di�ers from
one at rest only by the cells velocity i.e. by a Lorentz boost. Or in other
word, a moving cell has a given four-velocity uµ. Therefore, the general for
of T µν for a cell moving with four-velocity uµ is given by

T µν = uµuν(ε + p)− p gµν (48)

where
g = diag(1,−1− 1− 1)

is the metric tensor. Using the de�nition of the four-velocity Eq.41 we can
easily verify that the general form of T µν reduces to that in the rest-frame
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if cell does not move, i.e uµ = (1, 0). The equations of ideal relativistic
hydrodynamics are then

∂µT
µν = 0 (49)

∂jµ
i = 0 (50)

i.e. the conservation of energy, momentum, and all charges i of the system.
Next let us write these equations more explicitely for the case of one

conserved charge. In this case the continuity equation for the rest-frame
density ρ0 of the conserved charge is

∂µj
µ = ∂µ(ρ0u

µ) = 0 (51)

Inserting the explicit form for T µν , Eq.48 into Eq.49 we get

0 = ∂µu
µuν(ε + p)− ∂νp. (52)

which are four independent equations. The most instructive way to look
at these equations is to separate them into three spatial (vector) equation,
and one scalar equation. The spatial equations will have the well know
Euler equations of non-relativistic hydrodynamics as their limit. The scalar
equation will be the continuity equation for the entropy �ow. Lets �rst look
at the spatial equations by setting ν = i = 1, 2, 3

0 = ~u∂µ(uµw) + (uµw)∂µ~u + ~∇p (53)

where we have set w = ε + p, the enthalpy. For ν = 0 we get

0 = u0∂µ(uµw) + (uµw)∂µu0 − ∂tp

(uµw)∂µu0 = ∂tp− u0∂µ(uµw). (54)

Next we write ~u = uo~v and consequently

(uµw)∂µ~u = (uµw)~v(∂µu0) + (uµw)uo(∂µ~v)

= ~v [∂tp− u0∂µ(uµw)] + (uµw)uo(∂µ~v)

Inserting into Eq.53 the �rst term cancels and we get

0 = ~v ∂tp + (uµw)uo(∂µ~v) + ~∇p

= ~v ∂tp + u2
0w
[
∂t~v + ~(v · ~∇)~v

]
+ ~∇p.
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Reordering we get

∂t~v + ~(v · ~∇)~v = − 1

wu2
0

[
~∇p + ~v ∂tp

]
= −1− v2

ε + p

[
~∇p + ~v ∂tp

]
(55)

where we have used that u0 = γ = 1√
1−v2 .

In the nonrelativistic limit, all terms ∼ v can be ignored. Furthermore,
the energy density reduces to the mass density ε → ρm. In addition the
pressure is in this case small compared to the mass density. We thus obtain

∂t~v + ~(v · ~∇)~v = − 1

ρm

~∇p (56)

which is the well known Euler -equation for non-relativistic ideal hydrody-
namics.

So far we have three (vector) equations. The fourth, scalar one, we get
by multiplying Eq.52 with the four-velocity uν . Using that

uµu
µ = 1

∂ν (uµu
µ) =

1

2
uµ∂νu

µ = 0

we get

0 = ∂µ(uµw)− uν∂
νp.

Next we rewrite the �rst term of the previous equation identically as

uµw = ρ0u
µ

(
w

ρ0

)
= jµ

(
w

ρ0

)

and use the continuity equation 51 to arrive at

0 = ρ0u
µ

[
∂µ

(
w

ρ0

)
− 1

ρ0

∂µp

]
.

Next thermodynamics tells us (see appendix B) that the enthalpy density w
is related to the entropy-density σ, particle density ρ0 and pressure p via

d

(
w

ρ0

)
= Td

(
σ

ρ0

)
+

1

ρ0

dp
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Thus the above equation is simply a continuity equation for the entropy
current

0 = ρ0u
µT∂µ

(
σ

ρ0

)
Using the continuity equation 51 this can be cast into

∂µ(σuµ) = 0 (57)

which is simply a continuity equation for the entropy current

jµ
σ ≡ σuµ (58)

The meaning of the continuity equation of the entropy current is nothing
else that we are dealing with isentropic (adiabatic) dynamics in case of ideal
hydro.

To summarize, the (�ve) equations governing ideal hydro with one con-
served charge are

∂t~v + ~(v · ~∇)~v = −1− v2

ε + p

[
~∇p + ~v ∂tp

]
∂µ(σuµ) = 0

∂µ(ρ0u
µ) = 0 (59)

This set of di�erential equations are closed by the equation of state which
for example gives the pressure as a function of entropy and density

p = p(σ, ρo)

In addition one needs initial conditions for the velocity, the entropy and the
density. The result after hydro evolution is a velocity , entropy and density
�eld or schematically

(~v(~r, t0), ρ0(~r, t0), σ(~r, t0))
Hydro
=⇒ ~(~v(~r, tfinal), ρ0(~r, tfinal), σ(~r, tfinal))
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A Four-vectors

When dealing with four-vectors we have to di�erentiate between contra-
variant and co-variant four-vectors. A contra-variant four vector is given
by

xµ = (t, x, y, z)

whereas the co-variant version is

xµ = (t,−x,−y,−z).

They are related by the metric tensor

gµν = gµν = diag(1,−1,−1,−1)

xµ = gµνxν .

Furthermore
gν

µ = δν
µ = diag(1, 1, 1, 1)

and
xµx

µ = xµxνgµν

is invariant under Lorentz transformations. When dealing with derivatives
one has to be careful the contra-variant derivative is given by

∂µ = (
∂

∂t

,
∂

∂xi

) = (∂t,−~∇)

and the co-variant derivative is

∂µ = (∂t, ~∇).

Thus the spatial components enter with the opposite sign.

B Some thermodynamics

The basic thermodynamic identity for a system with one conserved charge
N is

E = TS − pV + µN (60)
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The �rst law of thermodynamics is expressed through the di�erential of the
extensive quantities (E, S, V, N) via

dE = T dS − p dV + µ dN.

This relation is also directly related to the micro-canonical ensemble, which
also is controlled by the same macroscopic quantities. To go to the canonical
ensemble, one introduces a Legendre transformation and introduces the free
energy F

F = E − TS = −pV + µN

so that
dF = −S dT − p dV + µ dN.

The free energy is related with the canonical partition function via

F = −T ln Z.

The grand-canonical free energy often called the thermodynamic potential
Ωis obtained by another Legendre transformation

Ω = E − TS + µN = F + µN = −pV

and
dΩ = −S dT − p dV −N dµ.

The relation to the grand-canonical partition function is again

Ω = −T ln ZG

from which follows, the relation between ZG and the pressure p

pV = T ln ZG. (61)

Another thermodynamic potential is the enthalpy H which controls a
system where the volume may �uctuate but the pressure is kept constant,
for example a balloon under water.

H = E + pV = TS + µN

and
dH = T dS + V dp + µ dN.
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In the context of hydrodynamics, one deals with the enthalpy density

w =
H

V
= ε + p = Tσ + µρ

where ε = E
V
is the energy density, σ = S

V
the entropy density and ρ = N

V
the

particle density. For the di�erential we have

dw = T dσ + dp + µ dρ

In the discussion of hydrodynamics we need the di�erential d(w
ρ
) which we

will work out here

d(
w

ρ
) =

1

ρ

(
dw − w

dρ

ρ

)

=
1

ρ

(
T dσ + dp + µ dρ− T

σ

ρ
dρ− µ dρ

)

= T (
dσ

ρ
− σ

ρ2
dρ) +

1

ρ
dp

= T d

(
σ

ρ

)
+

1

ρ
dp
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