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1 Reading:

Shamos, Great Experiments in Physics, pp. 42-58

2 Harmonic Motion

2.1 Free Oscillator

Many different types of harmonic motion exist. Of these, the most basic is called ”simple harmonic
motion”, which is purely sinusoidal and therefore easily analyzed mathematically. Simple harmonic
motion exits in an oscillating system when the restoring force of the system is directly proportional to
the displacement. Thus Newton’s Second Law becomes

m
d2x

dt2
= −kx (1)

where m is the mass, d2x/dt is the acceleration, k is the force constant of the restoring force, x is the
amount of displacement of the system, and t is the time. For an angular pendulum, k is the torsional1

spring constant and m is the moment of inertia. The solution of this equation is of the form x = A sin ω0t,
where ω0 is the angular frequency in radians per second. Subsituting this into Eq. 1, we find that

mω2

0
= k (2)

which gives us the natural frequency of the oscillator

ω0 =
√

k/m (3)

We can convert ω0 into the frequency in hertz by noting that there are 2π radians per cycle or ω = 2πf

f0 = (1/2π)
√

k/m (4)

The period is just the inverse of the frequency.
If a simple harmonic oscillator were perfectly isolated, it would continue to oscillate forever, because

there would be no resistance to motion. In real systems, however, there is always some amount of
resistance or friction which leads to damping of the oscillator. Therefore the model of simple harmonic
oscillators is not adequate, and we need to add another term to the equation, namely a damping force
which is proportional and opposite to the velocity of the oscillator, to form a more accurate model. The
damped harmonic oscillator is described by:

d2x

dt2
+

b

m

dx

dt
+

kx

m
= 0 (5)

1torsion comes from the Latin verb torquēre , to twist, whence the word torque
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where b is the damping constant for the system. Such a differential equation has a solution of the form
x = eαt. This substitution produces the characteristic equation for Eq. 5.

α2 + (b/m) α + k/m = 0 (6)

The solution to this quadratic equation is

α =
[

−b/m±
√

b2/m2 − 4k/m
]

/2 (7)

By examining the discriminant, b2/m2 − 4k/m, we find three different types of damping. If b2 = 4mk,
the equation has real and equal roots, and the system is said to be critically damped. In this case, the
system approaches the equilibrium position, x=0, as rapidly as possible. If b2 > 4mk, the equation has
real and unequal roots, and the system is said to be overdamped. The system also approaches equilibrium
without oscillation, but not so rapidly. If b2 < 4mk, the equation has complex roots, and the system is
said to be underdamped. The system will oscillate with decreasing amplitude. The solution for this case
is

x (t) = e−λt (A cosω′t + B sinω′t) (8)

The frequency of the damped oscillation is

f ′ = 1/(2π)
√

(k/m − b2/4m2) (9)

According to this equation, an underdamped oscillator has a lower frequency than an undamped one, i.e.,
there is a frequency shift. For modest damping such that the amplitude of oscillation is still appreciable
after a few oscillations, the shift is small but measurable. In this laboratory session we will be working
with underdamped systems which begin oscillating at the maximum displacement, so that B = 0. It is
straightforward to substitute this solution into Eq. 5 to verify that this is a solution for

ω0 = k/m

λ =
b

2m

ω′ =
√

(ω2
o − λ2) (10)

2.2 Driven oscillator

When a vibrating string is subjected to a periodic external force, it is said to be in a state of forced
harmonic oscillation, which can be described by the differential equation.

m
d2x

dt2
+ b

dx

dt
+ kx = F cosωt. (11)

where F cosωt is the driving force of the system. Note that we now have three omegas: ω◦, ω
′, andω.

If the frequency of the periodic external force, ω, is equal to or very near the frequency of the damped
oscillator, ω′, then the system is in resonance, and the amplitude of the oscillations is large. The point
at which this occurs is sometimes called a resonant peak because of the shape of the graph of amplitude
versus frequency.

The general solution of Eq. 11 is the sum of two pieces: a) the solution to Eq. 5, which is the transient
part, being damped out for t ≫ λ = 2m/b, and b) the steady state solution

x =
(F/m) cos (ωt + φ)

√

[

(ω2 − ω′2)
2

+ 4λ2ω2

0

]

(12)

The amplitude of oscillation is proportional to

1
√

[

(ω2 − ω′2)2 + 4λ2ω2

0

]

,
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which is maximum for an imposed frequency ω = ω′, and half as great for an angular frequency ωh

(

ω2

h − ω′2
)2

= 12λ2ω2

0

or
ω2

h = ω′2 ± 2
√

3λω0 (13)

These equations can be used to describe, or at least approximate, nearly all naturally vibrating phenom-
ena, and examination of machines which illustrate these properties, such as the torsional pendulum, will
illustrate these concepts.

3 Apparatus

Manufacturer
1 torsional pendulum apparatus (Leybold-Heraeus)
2 photogates with timers (Pasco Scientific)
1 15 V, 2 A power supply (GW Mod GPS 1850)

for damping coil
1 24 V, 0.8 A power supply (ElectroProducts)

to drive motor
test leads with banana plugs
1 digital voltmeter
1 digital ammeter

4 Methods

The timing of the pendulum has a long history of tedium. The experiment requires measurements of the
period of oscillation, which technology has fortunately helped us to do without the use of stopwatches
and the counting of pendulum swings. We use a photogate, a device which uses a beam of light to control
an accurate electronic timer. The settings on the base of the timer determine how the beam controls the
timer. If the setting is “pend”, then the timer will start when the light beam is broken the first time and
will stop when the light beam is broken the third time, corresponding to one full period of a pendulum
swing. When the setting is “pulse”, the timer starts on one break and ends on the next, corresponding
to one half of a period of a pendulum, if the gate is accurately centered. When it is set to “gate”, the
timer runs as long as the beam is broken, ending as soon as the obstruction is removed. We use “pend”
mode so that the gate need not be at the midpoint of the swing.

5 Procedure for the Torsional Pendulum

Objective:
(a) measure the frequency and damping parameters for several intensities of braking
(b) plot the resonance curve for driven oscillator for several damping currents.

1. General setup procedures. A variable speed motor and connecting rod provide a nearly sinusoidal
driving motion for a wheel, and a coil spring provides the restoring torque. Damping is provided
by an electromagnet; a conductor moving through a magnetic field experiences a braking force.
Connect the DC output of the ElectroProducts power supply to the two upper plugs on the driving
motor control block on the right side of the apparatus. Use a digital voltmeter to measure the
applied voltage and adjust the power supply to about 25 V. Applying higher voltages will burn out
the resistor network which controls the speed of the motor. Adjustments to motor speed should be
made with the coarse (gross) and fine (fein) controls on the box. Reconnect the voltmeter to the
lower connections on the box. This connection measures the voltage applied to the motor and is
more valuable for returning the motor speed to a value you had previously used and recorded speed
and voltage in your notes.
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The motion of the pendulum is damped by the electromagnetic damping coil located beneath the
pendulum, with its connections in the back. Set the voltage knob on the GW supply counterclock-
wise (zero). Connect the DC output of the GW power supply in series with a digital ammeter and
the damping coil.

Note: NEVER connect an ammeter in PARALLEL with a voltage source. Ammeters have a very
low internal resistance and hence AMMETERS MUST BE CONNECTED IN SERIES WITH THE
VOLTAGE SOURCE AND THE LOAD. To do otherwise could destroy the ammeter or blow its
fuse, if it has any. This is why we ask you to have the instructor check the circuits you build before
you turn them on.

Position the one photogate timer so that the extension of the horizontal connecting rod between
the motor and the pendulum completely crosses the timer’s beam twice when the driving wheel
makes one revolution, that is, not off the end of the rod. Mount the other timer on the blocks of
wood over the coil connections so that the piece taped to the wheel crosses the timer beam. One of
these timers will measure the period of the pendulum and the other measures ω′, the period of the
driving force. The two periods will be identical once equilibrium has been reached, and the times
will agree; in practice, you may find that the two timers do not agree perfectly. You will obtain
erratic readings from the timers if the photogates are blocked at the instant when you push the start
button - be careful to identify these readings and repeat the measurements whenever necessary.

2. Free Oscillations

(a) Either by just turning the driving wheel by hand or by turning the ElectroProducts supply on
and off, adjust the stopping position of the motor so that the white arrow on the pendulum
points to zero with the motor off. This adjustment should center the equilibrium position of
the wheel. Turn the damping current off for the first measurements.

(b) Investigate the transient behavior of the oscillator with a step external force by using your
fingers to move the pendulum ten units to one side prior to releasing it. Note that a slightly
different period is obtained if amplitudes greater than ten are used. This a probable indication
of departures from Hooke’s Law for larger amplitudes, and you should not use data with larger
amplitudes.

(c) Measure the period of the oscillation with the photogate. Count the number of oscillations
required for the amplitude to decrease to a convenient fraction of the initial value, such as 1/2
or 1/10. Use these data to determine t1/2 or t1/10 and hence λ. If only one or two oscillations
are required to get to one half of the amplitude, your value of t1/2 will be inaccurate and you
must use t1/10. Compute λ and ω′ from these data. Repeat for damping currents of 0.10 A,
0.25 A, 0.45 A and 0.6 A.

(d) Tabulate your values for λ and make a plot of λ versus the damping current. For each value
of λ, what is the expected frequency shift, ω0 − ω′, and how does it compare with your
measurements? (How can you answer this question when you aren’t given ω◦?)

(e) The magnet coil will overheat if currents greater than 1 A are used for more than a few minutes,
but higher currents are needed to show the overdambed behavior. Observe the motion of the
pendulum when currents of 1 and 1.5 A are used, but do not leave these high currents on for
more than a minute or so. Describe the behavior of the pendulum.

3. Forced oscillations.

(a) Set the damping current to the second value of 0.25 A and turn on the driver. Wait long
enough for the two periods to be equal, so that the transient part of the solution has died
out. Plot the amplitude of the oscillation versus frequency for driving frequencies between
0.45 Hz and 0.65 Hz (t between 2.222 s and 1.538 s). You will need steps of 0.005 Hz near
the peak, while coarser steps are adequate at the edges. From the peak of your plot, find ω′.
Note whether the driver and oscillation are in or out of phase for frequencies well above and
well below resonance.
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(b) Calculate the expected half-height points from your data in the preceding section and equa-
tion 13 or from the corresponding equation for t1/10, which you derive. Plot these points as
vertical lines on your graph of amplitude versus frequency.

(c) If time permits, repeat steps 3a and 3b for the third value of damping current, 0.45 A. This
curve will be wider, so the range of frequency should be somewhat greater and the steps a bit
larger.

6 Results

With what accuracy did you determine ω, ω′, and λ? In the torsional pendulum, what determines the
resonant frequency? What causes the damping? What is the distinguishing characteristic of the graphs
when the driving frequency approaches the natural frequency? What happens when damping is applied?
How does the width of the resonance curve depend on the amount of damping? Why does the frequency
shift in a damped system? For what current is the system overdamped, underdamped, and critically
damped? What are the sources of error in this experiment, and how could you build a better apparatus
to minimize these?
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